Axotomized motoneurons can be rescued from cell death by peripheral nerve grafts: the effect of donor age.
نویسندگان
چکیده
Injury to neonatal nerves, unlike adult nerves, results in poor regeneration and extensive motoneuron death. We examined whether exposure to a more mature nerve environment could rescue axotomized motoneurons following neonatal injury. The sciatic nerve in 1 hindlimb of 3-day-old (P3) rats was transected and the cut end sutured to a nerve graft taken from donor rats, which ranged between P3 and P21. The extent of motoneuron survival and axon regeneration was established 7 days later. Since integrins play an important role in regeneration, we also examined the effect of manipulating integrin binding in nerve grafts. Following axotomy at P3 and implantation of nerve grafts from 3-day-old rats, approximately 38% of motoneurons survived. In contrast, grafts from rats aged 5 days and older resulted in an improvement in regeneration, and over 70% of motoneurons survived. This survival-promoting effect of P5 grafts was prevented by blocking beta1-integrins. In contrast, increasing beta1-integrin levels in grafts from P3 rats dramatically increased motoneuron survival. Thus, following neonatal nerve injury, exposure to a more mature nerve environment significantly increases motoneuron survival, an effect that is dependent upon beta1-integrin signaling. Therefore, pharmacological upregulation of beta1-integrins may significantly improve the outcome of neonatal nerve injuries.
منابع مشابه
اثر حفاظت عصبی اریتروپویتین بر نورونهای حرکتی نخاعی به دنبال آکسوتومی در نوزاد موش صحرایی
Background and Objective: Because of the critical role of cell death in the pathology of neurodegenerative diseases, its prevention is regarded as one of the most salient ends in neuroprotective strategies. Concerning the bulk of reports about the putative neuroprotective effects of erythropoietin (Epo), in the present study following axotomy, the effects of different doses of Epo on spinal mo...
متن کاملDelayed Synaptic Changes in Axotomized Spinal Motoneurons of Newborn Rats Associated with Progressive Neuronal Loss: Immunohistochemical, Ultrastructural, and Quantitative Study
Background and Objective: Sciatic nerve transection is characterized by a rapid wave of motoneuron death associated with progressive synaptic lesions. The purpose of this study was to evaluate the long term synaptic changes. Materials and Methods: This basic study was carried out on paraffin- or resin-em...
متن کاملNicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion
Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...
متن کاملThe Prophylactic Capacity of Nepeta Menthoides (Ostokhodus) in Prevention of Spinal Motoneuron Injury
Background & Aims: Since apoptotic cell death plays a crucial role in many neurodegenerative diseases, control of apoptosis can be taken into account as a putative neuroprotective strategy. Due to the reported neuroprotective effect of the herbal medicine Nepeta Menthoides (Ostokhodus) on the axotomy-induced apoptosis in the spinal motoneurons, in the present study we have investigated its prop...
متن کاملDeprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy
Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2003